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Observations of inertial waves generated by uniform horizontal flow over ridges and 
truncated axisymmetric obstacles in a homogeneous fluid rotating about a vertical 
axis are discussed and compared with linear theory. The dependence of the flow on 
obstacle shape, Ro, H ,  E and E is investigated. Here Ro = U/2QL is the Rossby 
number, H = Ro(D/L) ,  E = u/2QL2 is the Ekman number, and 6 = h / L  is the 
non-dimensional height of the obstacle, where U is the basic velocity, Q is the angular 
frequency, L is a streamwise length, D is the depth of the fluid, h is the height of the 
obstacle, and u is the kinematic viscosity. Previous linear analysis of this problem 
has been for the limit H fixed, Ro -P 0, referred to here as the small-Ro limit. However, 
it  is shown that certain linear terms neglected in the small-Ro limit can be important 
for finite Ro, and are included in the analysis given here. The observed flow is then 
well described by linear theory for HIE 9 1 ,  particularly in the case of two-dimensional 
flow over a ridge. However, for H/E 6 1 the flow field is dominated by a vertical 
columnar motion, which is not adequately described by the analysis. 

1. Introduction 
One of the most striking properties of slow steady relative motion in a rapidly 

rotating inviscid fluid is the tendency for the flow to be invariant in the direction 
parallel to the axis of rotation. This is a result of the primary balance between 
pressure gradient and Coriolis forces that leads to the well-known Proudman-Taylor 
theorem (Proudman 1916; Taylor 1917). Taylor (1923) demonstrated the implications 
of this balance in an experiment in which he slowly towed a truncated right-circular 
cylinder across the horizontal bottom of a tank rotating about a vertical axis. He 
found that fluid not only flowed around the cylinder but also flowed around a column 
of relatively stagnant fluid above the cylinder. This column is now commonly referred 
to as a Taylor column, a term suggested by Hide (1961), who based a model of 
Jupiter’s Great Red Spot on this phenomenon. Subsequent work suggests that  the 
stagnant column observed by Taylor forms only for Rossby numbers less than some 
critical value, where the critical value Roc depends on initial conditions, viscosity, 
fluid depth and obstacle height and shape (Jacobs 1964; Ingersoll 1969; Huppert 
1975; Johnson 1978). 

Another important property of rotating fluids is that  even a homogeneous rotating 
fluid can support inertial waves. I n  fact it has been suggested the inertial waves are 
the more general property (Greenspan 1969, pp. 2, 3) and that the strong tendency 
towards two-dimensionality is only a manifestation of inertial wave propagation in 
the limit of zero excitation frequency. Lighthill (Hide, Ibbetson & Lighthill 1968; 
Lighthill 1970) considered the inertial wave field generated by a sphere moving with 
constant velocity normal to  the rotation axis as a model for a Taylor column. He 
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pointed out that  the largest-amplitude inertial modes excited by flow over an obstacle 
are those with wavelengths comparable to  the dimensions of the obstacle. He 
estimated that in the far field most of the energy is due to these modes and is confined 
to a narrow cone, the axis of which trails the obstacle and makes an angle q5 with 
the axis of rotation, where q5 = arctan ( ~ R O ) .  

Hide et al. (1968) found that the angle # was in good agreement with that observed 
experimentally and called the trailing disturbance a ‘tilted Taylor column ’, implying 
that the inertial waves and the Taylor column are one and the same phenomenon. 
However, on the basis of the present experiments and other recent work, this does 
not appear to be the case. It now seems clear that  inertial waves are neither the 
primary cause 6f two-dimensionality nor are they responsible for the Taylor column, 
since, for example, they produce neither the vertically uniform nor the horizontally 
asymmetric motion characteristic of a Taylor column. 

A partial explanation for the columnar appearance of the inertial wave disturbance 
observed by Hide et al. (1968) was provided by Mason & Sykes (1981) and Johnson 
(1982). They pointed out that  short wavelengths are strongly damped by viscosity 
and do not appear in experimental observations. Therefore, the disturbance observed 
experimentally is mainly due to the long wavelengths whose surfaces of constant 
phase do not curve significantly near the obstacle, and, since further from the source 
their amplitude is negligible owing to  damping and dispersion, the inertial wave 
disturbance has the form of a uniform tilted column near the obstacle. 

Cheng, (1977) formulated far-field inertial-wave solutions for steady, inviscid, 
infinitely deep flow over a thin axisymmetric obstacle. He confirmed the phase 
structure of Lighthill’s (Hide et al. 1968) solution and provided an  explicit description 
of the far-field structure on obstacle shape. However, owing to  an error in his far-field 
analysis, he predicted that the amplitude was undiminished downstream. Corrected 
results, along with numerical examples, have recently been presented by Cheng & 
Johnson (1982) and now agree in general with Lighthill with regard to  decay 
downstream. Stewartson & Cheng (1979) show that in addition to  obstacle shape, fluid 
depth plays an important role in determining the strength of the inertial waves. In  
an infinitely deep fluid the inertial-wave spectrum is continuous. However, when the 
depth is finite the modes are discretized and certain parts of the spectrum may be 
eliminated. I n  particular, as H decreases, the low-wavelength modes, which are, in 
general, the largest-amplitude modes, are eliminated and the contribution to  the flow 
from the inertial waves becomes weaker. For this reason, caution must be exercised 
in ascribing the tilted columnar disturbance observed by Hide et al. (1968) in a 
relatively shallow fluid to the low-wavelength large-amplitude inertial-wave modes. 

Stewartson & Cheng (1979) show that there exists an additional component of the 
flow field, distinct from the inertial waves, which resembles the flow around a Taylor 
column in that this component is vertically uniform, horizontally asymmetric and 
has no vertical velocity associated with it. The flow associated with this component 
is in agreement with that prescribed by the Proudman-Taylor theorem, and will be 
called the geostrophic component. Depth and obstacle thickness determine the 
strength of the geostrophic component because it is the result of vortex-tube 
compression, and the subsequent generation of relative vorticity, as fluid flows over 
the obstacle. The parameter which indicates the relative importance of the geostrophic 
component and inertial effects is H I E ,  first used by Hide (1961). It has been shown 
by Huppert (1975), Johnson (1978) and Stewartson & Cheng (1979) that  for H / s  4 1 
the geostrophic component prevails and closed streamlines appear above the obstacle, 
whereas, for H / e  % 1, Stewartson & Cheng show that inertial effects dominate the flow. 
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The organization of this paper is as follows: In $2 we extend the inertial-wave 
solution of Stewartson & Cheng (1979) to finite Ro for linear steady inviscid flow over 
two-dimensional ridges of two basic shapes in a fluid of finite depth. Section 3 contains 
a description of the apparatus and the flow-visualization technique. In  $4 we report 
the results of an experimental study of inertial waves generated by flow past an 
obstacle in a rapidly rotating fluid. Streamlines based on the solutions formulated 
in $2 are compared with observed wave patterns. The transition from a flow in which 
inertial waves are the predominant form of motion to one in which the geostrophic 
component prevails is briefly discussed. 

2. The inertial waves 
This analysis is mainly concerned with solutions to the linear steady inviscid 

two-dimensional equations, but the full nonlinear governing equations are developed 
to indicate the degree of validity of the linear approximation. Some linear 
asymptotic three-dimensional solutions are also discussed. Following Stewartson & 
Cheng (1979) we introduce the following scalings : 

L 
(2, y, z)* = L 5,  y, -2 , * - -t ( 3 t - U ’  

(u, v, w)* = U ( U ,  v ,  w ) ,  p*-pg = BRULpp, 

where * denotes dimensional qualities. p*-p ;  is the pressure deviation from its 
equilibrium value pg. The coordinate system is Cartesian and attached to the moving 
obstacle in the rotating reference frame (figure 1 ) .  Horizontal lengths are scaled with 
one-half the streamwise length L of the obstacle, vertical lengths are scaled with the 
fluid depth D, the three components of velocity are scaled with the mean flow speed, 
U ,  and time is scaled with the advection time, L / U .  The scaling for pressure reflects 
the basic geostrophic balance. The velocity and pressure fields are separated into 
geostrophic mean flow and perturbation components, and the perturbation com- 
ponents are rescaled to reflect the magnitude of the disturbance produced by an 
obstacle of non-dimensional height E ,  i.e. 

u = (l+EU’), v = €V’, w = €W’, p = -y+Ep‘,  

where E = h/L .  The primes denote perturbation components. Dropping the primes, 
the governing equations become 

V ,  

W ,  

( 2 . l a )  

(2.1 b )  

(2 . l c )  

v . u  = 0 ( 2 . l d )  

where 

For reference we repeat the definitions 

D V h 
L 2RL2 ’ € = L .  H = R o - - ,  E = -  

U 
2RL ’ RO = - 
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FIQURE 1 .  Cartesian coordinate system attached to the moving obstacle in the 
rotating reference frame. 

The boundary conditions are 

af af Ro 
w = (1  +eu)- +ev- a t  z = e-f(x, y), ax ay H 

(2.2a) 

w = O  a t  z = 1 ,  ( 2 . 2 b )  

wheref(z, y) defines the shape of the lower boundary (figure 1). 
Combining the divergence and vertical component of the curl of (2.1) yields 

( V 2 ~ - R 0 ~ d ) - ~ ~ . V ~  (2.3) aZ 
where the vorticity vector is given by 

o=1---- .(: +j  yHo;; ---&)+k(;-$), 
H az ax 

w2 = 0.0. 

Note that o. V w  is O(Ro/H) .  
We now approximate the governing equations and boundary conditions by the 

corresponding linear forms. Assuming that w and p are of unit order, to leading order 

aP 
dY 

u = - - +O(Ro),  

aP v = - + O(R0).  
ax 

For Ro < H ,  the nonlinear terms in ( 2 . 1 ~ )  and (2.3) may be neglected for eH < 1. 
However, as pointed out by Johnson (1982), the condition for linearization is less 
stringent in the two-dimensional case where d/ay = 0 and therefore u - O(Ro). Thus, 
the nonlinear terms in ( 2 . 1 ~ )  and (2.3) may be neglected for eHRo < 1, or eRo < 1 
for H < 1 .  In  addition to approximating ( 2 . 1 ~ )  and (2.3) by their linear forms, 
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previous studies (Hide et al. 1968; Cheng 1977; Stewartson & Cheng 1979; Johnson 
1982) have used the limit H fixed, Ro + 0, which will be referred to as the small Ro 
limit. I n  this limit the second-order partial derivative with respect to z ,  

a2/az2, in the Laplacian operator is neglected. Here this term is retained and 
will be shown to be possibly as large or larger than the derivatives with respect to 
x and y in the Laplacian. Therefore it is not inconsistent to retain this term while 
neglecting nonlinear terms that a t  first appear to  be larger. Proceeding to linearize 
( 2 . 1 ~ )  and (2.3), 

(2.4a) 

(2.4b) 

Equations (2.4a, b )  combine to yield a single equation in either w or p 

The boundary condition ( 2 . 2 ~ )  on w a t  z = ( e R o / H )  f(x, y) can be approximated 
by a boundary condition on w a t  z = 0 with an error O(eRo/H).  Linearization is valid 
for E 6 1 in the three-dimensional case or ERO $ 1 in the two-dimensional case. The 
linear boundary conditions are 

( 2 . 6 ~ )  

w(x, y, 1)  = 0. (2.6b) 

Assuming solutions of the form A(k, (T) exp (ik . x+ d) ,  where 

k = ( k z ,  k,, (Ro/H) k,) and x = (x, y, ( H I R o )  z ) ,  

the dispersion relation corresponding to  (2.5) is 

where k = Jkl. Equation (2.7) shows that viscous damping is proportional to the 
square of the wavenumber. Thus short waves are more strongly damped than long 
waves. 

We now restrict our attention to steady inviscid flows. The neglect of viscosity is 
valid for l$ 6 H and E 6 HRo (Stewartson & Cheng, 19?9), which holds in most 
of the experimental cases considered here. For steady, inviscid flow (2.7) reduces to 

Hk,(k; + k;); 
k, = _+ 

(1 - Rozk;)l . 

It is now clear that  differentiation with respect to z in the Laplacian operator can 
give rise to  terms as large as those resulting from differentiation with respect to x 
and y. Substituting for k, from (2.8), the ratio of the vertical and horizontal 
components in the Laplacian operator is 

Ro2& 
1 - Ro2k i  ' 

Thus, if terms resulting from differentiation with respect to z cannot be neglected 
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when they are a t  least one quarter as large as those resulting from differentiation with 
respect to x and y ,  then neglect of the vertical component of the Laplacian operator, 
as in the small-Ro approximation, is not valid for Ro k, 2 5-i. Thus the small-Ro 
approximation does not hold for wavelengths less than about 271 Ro 54. 

The general solution to (2.5) for a two-dimensional ridge of arbitrary shape is 
(Stewartson & Cheng 1979) 

00 sin [k,( 1 - z ) ]  
w ( x ,  z )  =‘s 2n -a e ikzxF(kx)  sin k, dk ,  , (2.9) 

where F(k , )  is a weight function that ensures that w ( x ,  0) satisfies (2.6a), i.e. 

F(k, )  = i k ,  JIl e- ikzxf (x)  d x .  (2.10) 

The integral (2.9) is evaluated by completing the contour with a semicircle, with 
closure above the real axis if x +  1 > 0 and below if x + 1 < 0, determined by the 
requirement that the contributions from the k i  poles, defined below, decay expo- 
nentially. The solution is obtained by summing the contributions from the residues 
corresponding to the zeros of sink, and the poles of F(k , ) .  The result is a slowly 
converging, infinite series. Convergence is accelerated by averaging successive partial 
sums (Fejer’s method) but still requires summation over about 1000 terms for 
convergence at each point in the fluid. Convergence is slowest for large values of Ro 
or H. 

The zeros of sink, that contribute residues to (2.9) occur for k,  real and equal to 
nn,  n = 1,2,3,  . . . . Therefore, from (2.8), k, = f k ; ,  k i k ; ,  where 

( 2 . 1 1 ~ )  

(2.11b) 

Equation (2.11a) shows that the wavenumbers k; are limited to 

k; < Ro-l. (2.12) 

as n --+ co. This fundamental cutoff criterion is not obvious in the small-Ro limit, where 
k ,  = k; = k i  = (nn/H)t, and, therefore, k ,  + co as n --t 00 for fixed H. Equation 
(2.12) is just the steady non-dimensional version of the more-general dimensional 
cutoff condition on the Doppler-shifted frequency of an oscillatory source 
c* + Uk; < 252 relating the frequencies of the waves in a translat,ing reference frame 
to those in the stationary (rotating) reference frame when c* = 0. There is no cutoff 
wavenumber for the decaying modes k;. 

Streamlines calculated from the solution (2.9) provide a means for detailed 
comparison between calculations, which take into account the shape of the obstacle 
and the depth of the fluid, and experimental observations. These are given by 

Z ( X )  = W ( X ,  z ( - m ) ) d x .  (2.13) 

Here terms O(c2R02 /H)  have been neglected in the two-dimensional case. 
Another method used to compare experimental observations to theory is based on 

the asymptotic theory for linear dispersive waves in the far field developed by 
Lighthill (1960, 1965, 1967). Lighthill (1978) shows that in a system governed by 
linear equations with constant coefficients where there is no transfer of energy 
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between waves, waves of wavevector k are found along the group path for that 
wavevector and have an amplitude proportional to  IF(k)l. Therefore, regions of 
maximum and minimum amplitude within a wave pattern are determined by the 
positions of the group paths for the maximum- and minimum-amplitude wavevectors. 
It is possible to identify the group paths for wavevectors corresponding to zeros of 
F ( k )  since no waves appear along these paths. These group paths are visible as 
quiescent regions within the wave pattern. The position of the observed quiescent 
region can then be compared with that calculated for the group path for the 
wavevector k , ,  where F ( k , )  = 0. 

The group path for a wavevector k in the far field depends on Ro, and can be 
determined from the far-field group velocity with components 

1 - Ro2k; c, = l + k ;  

c, = k,k, 

c, = 

k;+k;  ’ 

k;+k; ’ 
1 - Ro2k; 

(1 - Ro2k;)t 
Ro( ki + k;); ‘ 

(2.14a) 

(2.14 6 )  

(2.14 c) 

Note that z* is scaled with L rather than D in (2.14)-(2.16)’ so that the spatial 
coordinates are scaled uniformly to facilitate comparison of calculated and observed 
group paths and phase surfaces. Also, in (2.14)-(2.16) the small Ro limit is obtained 
by setting the Ro2k; terms equal to  zero. For a wavevector k in the plane y = 0, 
subsequently referred to as the centre plane, (2.14a-c) show that the group path lies 
along a straight line sloping downstream a t  an angle q5 from the z-axis, where 

RO k,(2 - Ro2k;) q5 = arctan 
( 1  - Ro2k;)% (2.15) 

For group paths sloping progressively downstream, (2.15) shows that the wavenumber 
increases as q5 increases and that the cutoff wavenumber k, corresponds to the 
horizontally directed group path q5 = 90’. 

The forms of F(k,) for the two ridge shapes used in the experiment (defined in $3)  
are plotted in figure 2. The first zeros occur for k, = 4-20 for the cylindrical ridge 
and k,  = 7r for the top-hat ridge. The group-path angles for the wavenumbers 
corresponding to the first zeros of F(k,) for the cylindrical ridge and F(k,,  0) for 
the spherical cap, k, = 420 and 487 respectively, are calculated and compared with 
experimental observations in $4. Assuming that the small-Ro limit does not hold 
for Rok,  2 5-4, the group-path angles calculated for k, = 4.20 and 4.87 based on 
the small-Ro limit are expected to be significantly in error for Ro > 0.11 and 009 
respectively. 

The wave pattern is effected in other ways by the values of Ro and H .  Figure 2 
shows that the largest-amplitude modes are those with wavelengths comparable to 
4L, that  is k, = 47r. For ‘streamlined’ ridges, such as the cylindrical ridge, IF(k,)l 
decreases as k,  increases. However, this it not true for ridges with sharp corners such 
as the top-hat ridge. Nevertheless, if Ro is large (Ro > 1/7r), the high wave- 
numbers are not excited because of the cutoff condition, and there is little difference 
between the wavenumber spectra €or blunt or smooth ridges. The vertical lines 
modulated by ~Fl(kx)~ in figure 2 are the values of k; from (2.11 a) plotted for Ro = 0.1 
and H = 10 in figure 2(a), and plotted for Ro = 0.1 and H = 1 in figure 2 ( 6 ) .  Figure 
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FIGURE 2. Normalized Fourier transforms, / ~ ( k z ) ~ / ~ ~ m a x ~  and ~ ~ ( k z ) ~ / ~ ~ ~ m a x ~ ,  of afi/ax for the 
cylindrical ridge fl(x) (solid) and the top-hat ridgef,(x) (dotted) respectively. Vertical lines denote 
~Fl(kz)~/~Flmax~ for k;, TL = 1,2 ,3 ,  . . . , for (a )  Ro = 0.1, H = 10 and ( b )  Ro = 0.1, H = 1. 

2 shows that as H decreases, the largest-amplitude modes are eliminated. A similar 
trend for the low wavenumbers is obtained by fixing H and decreasing Ro. This 
suggests that for small Ro,  in a fluid of finite depth, or for small H ,  the inertial waves 
are weak, as shown by Stewartson & Cheng (1979). 

Qualitative comparisons are made of observed three-dimensional surfaces of 
constant phase and those predicted by Lighthill’s theory. The far-field, three- 
dimensional surfaces of constant phase, are given in parametric form by 

1 1 - Ro2 k: 
x = -  l + k :  

k, @ [  k:+kE ’ 

k i + k i  ’ 
1 - Ro2k: 

y = CDk 

z = f -  
CD (l-Ro%:)$ 

Rok,  ( k : + k i ) i  ’ 

(2.16a) 

(2.16b) 

( 2 . 1 6 ~ )  
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where @ = @,,+27rn, n = 1 , 2 , 3 ,  . . . , is a phase constant. Equation (2.16) shows that 
the lee waves from a point source are contained by a caustic or wave envelope with 
roughly the shape of a ship's bow. At z = 0 the caustic is a line training downstream 
from the source. As z increases, the caustic in horizontal planes becomes wedge-shaped, 
approaching 19.5' from the x-axis a t  the vertex of the wedge directly above the source 
and then curving downstream. In the small-Ro limit, the caustic lines are straight 
and meet a t  an angle of 195' from the x-axis in every horizontal plane. 

Returning to the question of inclusion of the vertical derivative in the Laplacian 
operator, and taking into account (2.12), we see that this term must be included for 
5-4 < Ro k ,  < 1 .  However, in applying this analysis to experimental results i t  is noted 
that the modes k, z Ro-I contribute very little. The reason is that, first, the 
amplitudes of the short waves are small compared with those with wavelengths 
comparable to the streamwise body dimension, except for obstacles with sharp 
corners such as a top-hat ridge (figure 2)' and, secondly, as indicated by (2.7), short 
wavelengths are strongly damped by viscosity. Nevertheless, i t  is observed that there 
does exist a range of k, for Rok, 2 5-4 with amplitudes sufficiently large and 
undamped such that inclusion of the z-derivatives in the Laplacian operator provides 
significantly better agreement with experimental results than does the small-Ro limit. 

In  order to  produce waves with amplitudes large enough to  be detected visually, 
it is necessary to use relatively thick obstacles. I n  all the results discussed in $4, 
E = 0.61. Owing to this large value of E ,  and taking into account the maximum values 
of Ro and H used in the experiment, linearization is usually valid in the two- 
dimensional case, but the condition for linearization in the three-dimensional case, 
EH < 1 ,  is often not met. Aside from discrepancies due to use of a linear approximation, 
discrepancies between observations and calculations may arise in several other ways. 
The two-dimensional calculations do not take into account the side-walls in (2.13), 
nor do they include the effect of finite depth in (2.15) and (2.16). I n  addition (2.15) 
and (2.16) are asymptotic descriptions of the waves far from the source and may not 
be good approximations relatively near the source. I n  spite of this, these calculations 
do provide a reasonably clear interpretation of certain visible features, and, moreover, 
are often in good agreement with observations. 

3. Apparatus 
Side- and plan-view schematic diagrams of the apparatus are shown in figure 3. 

The 0.46 x 091 x 1.52 m3 acrylic tank (A) and its steel reinforcement and support 
frame (B) are mounted on a rotating turntable (C), which is driven by an electric motor 
(D). The obstacle (E) and traverse (F) are towed by means of a 0-79 mm stainless-steel 
cable powered by an electric motor (G). An aluminium box (H) is mounted on top 
of the acrylic tank. Guards (I) (the one on the left is hidden in the schematic) prevent 
water from spilling over the box during rotation. This box is open on top and closed 
on the bottom except for a 0.64 x 152 cm slit opening into the interior of the acrylic 
tank. Lights (J) shine through this slit and illuminate aluminium particles that  are 
used to visualize the fluid motion. A switch (K) is mounted on the traverse and is 
activated by pegs (L) mounted on a bar (M) to  trigger the camera as the obstacle 
and traverse, which move with the same velocity, are towed across the tank. The 
mirror (N), inclined at 45' from horizontal, is used to take photographs from beneath 
the tank. Slip rings (0) supply power to the rotating frame. The entire apparatus 
is levelled using the screws (P). The recording camera, which is not shown, can be 
mounted a t  various heights on the rotating table or the traverse to take photographs 
through the side or the bottom of the tank. When light is shone through the slit in 
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M K 

FIGURE 3. Schematic diagram of the experimental apparatus. (a )  Side view. ( b )  Top view of the 
apparatus between the bottom of the tank and the top of the turntable. 

the bottom of the box on top of the tank the centreplane is illuminated. When light 
is shone through slits a t  various heights on the side of the tank horizontal planes are 
illuminated. 

The flow is made visibie by a suspension of about 1 part aluminium powder to lo5 
parts water. The aluminium particles have the form of tiny plates. This technique 
makes use of the tendency for the axis normal to the plate to be aligned perpendicular 
to the local velocity gradient (Maxworthy 1971). When these particles are suitably 
oriented relative to the light source and the observer by velocity gradients in the fluid, 
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light is reflected toward the observer, and regions of the fluid with that velocity 
gradient appear brighter than surrounding regions. Flakes in regions without 
appreciable shear are randomly oriented and the region has a uniform matt6 
appearance. In  flows, such as the one reported here, where accelerations and particle 
inertia are small, the particles follow the local translational motions of the fluid. 
Therefore streaks visible in time exposures of the flow correspond to fluid streaklines. 
Unfortunately, the length of these streaks does not provide a reliable measure of 
velocity because, although the majority of the flakes have a particular orientation, 
individual flakes are continually rotating and therefore a given particle may not 
reflect light toward the observer during the entire time exposure. However, the length 
of streaklines does a t  least give an indication of regions of high and low velocity. 

This visualization technique is sensitive to relatively weak disturbances, and 
considerable care was required to avoid convection caused by heat from the lights 
and temperature differences between the fluid and the laboratory, which would 
otherwise obscure features of the flow being studied. Surprisingly, even the towing 
wire for the obstacle produced a visible disturbance over 150 towing-wire diameters 
away (see figures 10 and 12). 

Two obstacle shapes were used in the experiment : one smooth and one with sharp 
corners. Each of these shapes was tested in both a two-dimensional and three- 
dimensional configuration. The three-dimensional forms have the same cross-sectional 
geometries in the plane y = 0 as their two-dimensional counterparts, but are 
axisymmetric about the vertical axis. The two cross-sectional shapes are 

fl(r) = ~ - ~ { [ ( g ) ~ - r 2 ] 1 -  (64) LZ 1 1 
= 0 ( r  2 I ) ,  

f 2 ( 4  = 1 ( r  < 1 )  
= 0 ( r  3 l ) ,  

( r  < 1) 

where E = :-(# = 06096. The first shape fi generates a ridge that is a section of 
a cylinder or a hemispherical cap. The second shape fi generates a top-hat ridge or 
a truncated right-circular cylinder. 

The effective depth of the tank was varied by changing the size of the obstacle or 
the depth itself. The depths used were D = 22.9,457 and 91.4 cm. Obstacle radii, or 
values of half the streamwise length, used in the experiment were L = 1*27,2*54,3-81, 
5.08 and 1016 cm. The angular frequencies used were Q = 1.00, 2-00, and 400 s-l. 
The towing speed was varied continuously from U = 0043 to 2.64 cm/s. This allowed 
the following ranges of parameters; 00005 < Ro < 1.04, 0.0012 < H < 74.9, 
0.11 x lop4 < E < 28.3 x However, these parameters could not be varied inde- 
pendently within these ranges. 

4. Results 
For each series of observations we have tried to run the experiment long enough 

that all transients have disappeared. In  practice the time available for observations 
is limited to the length of time for the obstacle to traverse the tank and the time 
before internal wave reflections within the tank significantly modify waves within 
the region of observation. However, this is not a severe restriction, and the 
observations presented here are probably indistinguishable from the steady-state 
wave pattern. 

Streamlines have been calculated from (2.13) for f3(x) = 1 -0~646x2-0354x4 for 
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(b )  

FIGURE 4(a, b) .  For caption see facing page. 
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(4 

FIGURE 4. Flow over a cylindrical ridgef,(z) in the centreplane. Calculated streamlines are denoted 
by solid curves and group paths for k,  = 4.20 are denoted by dashed lines. The top of the photograph 
is a t  z = 043. In  each case L = 3.81 em, D = 91.4 cm, h = 2.32 em. ( a )  Ro = 0.179, H = 430, 
E = 3.13 x lop4 ( U  = 1.37 cm/s, n = 1.00 0); ( b )  Ro = 0121, H = 2.91, E = 3.13 x lop4 
(6' = 0928 cm/s, R = 1.00 9 - l )  ; (c) Ro = 00636, H = 1.53, E = 1.56 x lop4 ( U  = 0974 cm/s, 
n = 2.01 s-l); ( d )  Ro = 0.0310, H = 0.743, E = 0785 x lop4 ( U  = 0946 cm/s, R = 4.01 s-l). 
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FIGURE 5 .  Group-path angle $, for wavenumber k, = 4.20 versus Ro for flow over a cylindrical ridge. 
Observed values are denoted by circles. Calculated values are denoted by the solid line. The dashed 
line denotes the small-Ro limit. 

comparison with experimentally observed waves generated by flow over a cylindrical 
ridgef,(z). This ridge matches the cylindrical ridge in height and volume displacement 
per unit length, and closely approximates i t  in shape. Figure 4 shows several such 
comparisons. Here the calculated streamlines are superimposed on photographs of 
waves. The ridge is towed from right to left. The top of the photograph is a t  a height 
about half the total depth of the fluid. The thickness of the light sheet illuminating 
the waves is about 0.6 cm at the top of the tank and 3 cm a t  the bottom. 

The dashed lines in figure 4 are the group paths for k, = 4.20 according to (2.15), 
where, again, k ,  = 4.20 corresponds to the first zero in E;(k,) for the cylindrical ridge. 
As discussed in $2, the amplitude of the vertical velocity is zero along this path, and, 
since the amplitude of the pressure perturbation is proportional to lPl(kz)l, it is also 
zero along this group path. To lowest order the horizontal velocity is zero along this 
path because the pressure serves as a stream function for the horizontal velocity. As 
a result, there are no waves along this path, and i t  is easily discernable from the 
surrounding regions containing waves. Figure 5 shows a comparison of the calculated 
group-path angle q5 with measured values as a function of Ro for k ,  = 4.20. The dashed 
curve shows g5 versus Ro for the small-Ro limit. The experimental data indicate that 
the small-Ro limit is not valid for Ro > 0.1, in agreement with $2,  where it was 
suggested that the vertical derivatives in the Laplacian would become important for 
Ro > 0.11 for k ,  = 4.20. 

The observed phase and amplitude correspond closely to  that of the calculated 
streamlines near the first wave crest on the upstream side of the waves in figure 4. 
However, downstream from the first crest, the troughs and crests appear upstream 
of their calculated positions and observed amplitudes are much less than calculated. 
The observed amplitudes are expected to be less than the calculated values, since the 
calculations do not take viscosity into account. The damping appears to be greatest 
along the group paths for the highest wavenumbers in agreement with (2.7). The phase 
shift, except for the first crest, is particularly evident in the region occupied by the 
lower wavenumbers k, = 04-20,  i.e. between the vertical axis and the dashed line. 
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The phase difference is less apparent in the region occupied by wavenumbers 
k, = 4*20-R0-~, i.e. between the dashed line and the horizontal plane. This is perhaps 
a nonlinear effect, since it is observed primarily for the largest-amplitude modes, those 
in the range k, = 0-4.20, although this does not explain why there is good agreement 
between observations and calculations in the vicinity of the first crest. 

Another possible explanation for the discrepancy is that the sidewalls have not been 
taken into account in the calculations. The sidewalls block the cross-stream velocity 
v, and may cause the cross-stream horizontal flow to reverse direction sooner than 
it would if the sidewalls were not present. This would cause the first trough and 
subsequent crests and troughs to occur upstream of those calculated for strictly 
two-dimensional flow. The first crest would be less effected because it is upstream 
of the blocked cross-stream flow. The effect of the sidewalls is probably less evident 
for the region occupied by k, = 420 to Ro-l because there the horizontal scale of these 
waves is small relative to the lateral dimension of the tank, and the flow is 
approximately two-dimensional. 

Figure 6 compares the waves generated by flow over a cylindrical ridge with those 
generated by flow over a top-hat ridge for the same values of Ro, Hand E. The group 
paths for the first and second zeros of F(k,) in each case are denoted by dashed lines. 
As discussed in $2, the amplitudes of the modes between these two group paths are 
generally larger for the top-hat ridge than for the cylindrical ridge. Although in figure 
6 the photographs were obtained with short time exposures, and therefore do not show 
streaklines from which amplitudes can be measured, the degree of contrast between 
light and dark phase surfaces is indicative of the strength of shear, and suggests that 
larger amplitudes exist in this region for the top-hat ridge. Interestingly, the region 
between group-path angles $ = 0 and 34.5' for the top-hat ridge is almost devoid 
of waves (figure 6b). A possible explanation may lie in the flow separation and 
turbulence visible near the ridge. It is clear that the flow near the ridge does not 
conform to the top-hat shape, and perhaps the large-scale features, which would be 
responsible for the missing part of the wave pattern, are lost owing to a change in 
the effective shape of the obstacle. 

Figure 7 (a )  shows waves generated by flow over a spherical capf,(x, y), for the same 
values of Ro, H and E as in figure 6. The cross-sectional shape of the spherical cap 
in the centreplane is the same as that of the cylindrical ridge. However, the waves 
do not appear as intense for the spherical cap because the wave-energy density within 
the illuminated plane, which has finite thickness, is proportional to volume displaced 
by the obstacle within the illuminated plane, and the spherical cap displaces less 
volume than the cylindrical ridge within this region. Figure 7 (b),  where the Ekman 
number E is twice as large as in figure 7(a),  shows the effect of viscous damping. 
Damping does not change the shape of the surfaces of constant phase, but reduces 
the amplitude of each mode in proportion to the square of its wavenumber. As a result 
the modes of highest wavenumber, i.e. the most horizontally propagating modes, have 
disappeared from the region $ = 60'-90° in figure 7 ( b ) .  

Figure 8 shows a comparison of the observed and calculated group path angles for 
the spherical cap. Here the group-path angle is for wavenumber k, = 4-87 and 12, = 0 
corresponding to the first zero in F,(k,, 0). The measured group-path angle is 
consistently less than that predicted by about 3' for Ro = 0.05, increasing to about 7 O  

for Ro = 0.15. A possible explanation for the discrepancy is that the geostrophic 
component (Sl), which has not been taken into account in the calculation of the 
group-path angle, has deflected the flow laterally on the downstream side of the 
obstacle. This deflection can be calculated assuming that potential vorticity is 
conserved in crossing the obstacle (Batchelor 1967) and is clearly evident when the 
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PiausE 6. (a)  Flow over a cylindrical ridgef,(z). (6) Flow over a top hat ridge$,(%). Dashed lines 
denote group paths for wavenumbers corresponding to  the first and second zeros of F(k, ) .  The top 
of each photograph is a t  z = 0.53. Ro = 0.0987, H = 2.37, E = 1.36 x ( U  = 1.74 cm/s, L = 3.8 
cm, Q = 2.31 s-l, D = 91 cm, h = 2.3 cm). 
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(b )  

FIGURE 7. Flow over a spherical cap fi(r) in the plane y = 0. In ( b )  the value of E is twice that 
in (a ) ,  and increased viscous damping is evident. In each case L = 3.81 em, D = 91.4 cm, 
h = 2.32 cm. (a)  Ro = 00996, H = 2.39, H E  = 1.36 x ( U  = 1.76 cm/s, R = 2.21 s-l); 
( b )  Ro = 0.0992, H = 2.38, E = 2.77 x ( U  = 0858 cm/s, R = 1.14 SO). 
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FIGURE 8. Group-path angle y5 for wavenumber (kz ,  ky) = (487 ,O)  versus Ro for flow over a spherical 
cap. Observed values are denoted by circles. Calculated values are denoted by the solid line. The 
dashed line denotes the small-tlo limit. 

waves are viewed in horizontal planes through the wave field (figures 10 and 12). The 
surfaces of constant phase are deflected with the mean flow, but otherwise seem to 
be undistorted. Thus the group-path angle measured in the centreplane (k, + 0) ,  
illuminated in the photographs, is not the same group-path angle calculated for the 
now deflected symmetry plane ( k y  = 0).  The group-path angles for wavenumbers 
where k,  = constant =k 0 corresponding to  the first zero in Fl(lcz, k y )  are less than that 
for k, = 0, consistent with figure 8. The lateral walls counteract this deflection, and 
there is no net deflection of streamlines in the two-dimensional case (Huppert & Stern 
1974), which explains why the discrepancy is not observed in figure 5.  However, in 
the case of isolated obstacles relatively far from the walls, the flow may be deflected 
near the obstacle, and the influence of the lateral wall may only be apparent 
downstream from the region where the group-path angle is measured. Another 
possible explanation is that  the nonlinear terms, not included in the calculations, are 
responsible for the discrepancy. As discussed in $2, nonlinearity is expected to be more 
important in the three-dimensional case, However, i t  is not clear that  inclusion of 
the nonlinear terms would have the effect of lowering the calculated value of 4 for 
a given Ro. Interestingly, the group-path angle calculated for the cylindrical ridge 
fits the spherical-cap data quite well. 

Figure 9 shows the surfaces of constant phase in the plane z* = 548h calculated 
from (2.15). The lower half shows the waves in the small-Ro limit. The full wave 
pattern in either case can be obtained by reflection through the centreplane. Note 
that the transverse and converging phase surfaces meet at the envelope of the wave 
pattern in a cusp, but had the next order in the stationary-phase approximation 
leading to (2.15) been included, there would be a phase shift off i  at the caustic (Cheng 
1977). There are several significant differences that arise in the small-Ro limit. First, 
in the small-Ro limit the caustic is a straight line inclined downstream at an angle 
of 19.5' from the centreplane rather than curving downstream from the vertex, and, 
secondly, the distance between neighbouring surfaces of constant phase is much less, 
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FIGURE 9. Surfaces of constant phase in the horizontal plane z* = 588h for Ro = 0122 for full 
Ro-dependence (above) and small-Ro limit (below). In both cases the complete pattern is given by 
continuing the pattern by mirror symmetry to the opposite side of the centreplane. 

owing to the phase surfaces curving upward more rapidly in the small-Ro limit. 
Another difference, not apparent in figure 9, is that the curvature of the caustic 
toward the downstream direction increases with increasing Ro and decreasing z. 

Figure 10 shows a series of photographs, for decreasing Ro, of the flow over a 
spherical cap in same horizontal plane as the calculated phase surfaces in figure 9. 
The flow is viewed through a mirror beneath the tank, but is equivalent to the view 
from above with the direction of rotation counterclockwise. The obstacle is opaque 
and silhouetted against the light sheet illuminating the flow above. The width of the 
tank extends to the outer edges of the black borders. The sharp dark line a t  y = 0 
is the towing wire. The diffuse dark line surrounded by two white lines, especially 
noticeable upstream of the obstacle, is the disturbance generated by the towing wire. 

The decrease in the caustic wedge angle with increasing Ro and the curvature of 
the caustic a t  higher Ro are evident when figure 10 (a )  is compared with figure 10 (b ) .  
Notice that the transverse waves are clear, but converging waves are not visible. They 
are expected to be weak because they correspond to the high-wavenumber low- 
amplitude waves, which are the most damped. However, it is surprising that they 
do not appear a t  all, a t  least near the obstacle where amplitudes are large. The 
asymmetry of the wave pattern about the centreplane is evident, particularly in figure 
10(b). Figures 10(b, c )  display a wide dark region extending from the right side of the 
photograph toward the obstacle. This feature is apparently associated with a 
low-velocity wake behind the obstacle, and is absent for Ro > 0.08 (figure 10a). The 
strongest horizontal shear occurs on the left side (looking downstream) of the wake, 
and a series of shed cyclonic eddies appears on the right (figure 10d). 

Figure 11 shows a series of photographs, for decreasing Ro, of the flow over a 
spherical cap in the centreplane for almost the same values of Ro as in figure 10. As 
Ro decreases, the surfaces of constant phase become straighter and more vertical. The 
group-path angle in the centreplane for the first zero-amplitude mode decreases, and 
the inertial waves become weaker. For small Ro, the surfaces of constant phase appear 
to form a column, tilting downstream from the obstacle (figure 11 d) .  This is the ‘tilted 
Taylor column’ observed by Hide et al. (1968). However, as H decreases further, a 



338 K.  E.  Heikes and T. Maxworthy 

(b )  
FIGURE 10(a, b ) .  For caption see facing page. 

columnar feature becomes visible that does not seem to be associated with the inertial 
waves. As H decreases, the strongly deflected flow above the obstacle gives rise to 
what appears to be a vertical free shear layer separating the oncoming flow, with 
velocity comparable to the free-stream velocity, from a low-velocity region above the 
obstacle (figure 12). The free shear layer first becomes visible in the upper half of the 
fluid, as indicated by the dashed lines in figures 11 ( d )  and 13 (a ,  b ) .  It first becomes 
attached to  the obstacle near the trailing edge and moves forward as H decreases. 
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FIGURE 10. Flow over a spherical capfi(r) in the horizontal plane Z* = 588h. Direction of rotation 
is counterclockwise. Obstacle is traversing from right to left. In each case L = 3.81 cm, D = 91.4 cm, 
h = 2.32 cm. (a )  Ro = 0122, H = 2.93, E = 1.36 x (U = 2.15 crn/s, R = 2.32 s-l); ( 6 )  
Ro = 0641, H = 1.54, E = 0.784 x ( U  = 1.96 cm/s. R = 4 0 2  K1); (c) Ro = 0.0314, H = 0.754, 
E = 0784 x 
( U  = 0509 cm/s. R = 402 8-l). 

( U  = 0961 cm/s, R = 4.02 s-l); ( d )  Ro = 00166, H = 0399, E = 0.784 x 
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FIGURE 11. Flow over a spherical capfl(r) in the plane y = 0. In each case E = 1.38 x L = 3.8 
cm,Q=2.31 s-',Ll= 91.4cm,h=2~32cm.Thetopofthephotographisatz=052.(a)Ro=0123, 
H = 2.96 ( U  = 2.17 cm/s); (6) Ro = =  0.0673, H = 1.61 ( U  = 1.19 cm/s); (c) Ro = 00329, H = 0788 
( U  = 067 cm/s); ( d )  Ro = 0.00887, H = 0213 ( U  = 0.18 cm/s). 
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(b )  

FIGURE 12. Flow over a right-circular cylinderf,(r) in the horizontal plane z* = 535h. The depth 
in (b) is one quarter that in (a). Time exposure (At = U / L )  in the reference frame of the moving 
obstacle. Direction of rotation is counterclockwise. In both cases E = 0861 x L = 3.81 cm, 
C2 = 4.00 sP1 and h = 2.41 cm. (a) Ro = 00622, H = 1.49 ( U  = 1.89 cm/s, D = 91.4 cm); (b) 
Ro = 00625, H = 0375 ( U  = 091 cm/s, d = 22.9 cm). 
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(C> (4 
FIGURE 13(a, b ,  C, d) .  For caption see facing page 
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FIGURE 13. Flow over a spherical capfi(r) in the plane y = 0. The top of the photograph is at z = 052.  
In each case E = 0 1  11 x ( A  = 102 em, fi = 401 s-l, D = 91.4 em, h = 6.19 em). (a) 
Ro = 00240, H = 0216 ( U  = 1.95 cm/s); (b) Ro = 0.0178, H = 0160 ( U  = 1.44 cm/s); (c) 
Ro = 0.0140, H = 0126 ( U  = 1.14 cm/s); (d )  o = 00093, = 0.0838 ( U  = 0.758 cm/s); (e) 
Ro = 000329, H = 00296 ( U  = 0.270 cm/s); (f) Ro = 0.00150, H = 00135 ( U  = 0122 cm/s). 

Inertial waves from the leading edge of the obstacle are either blocked or absorbed 
by this layer. For low Reynolds numbers Re = Ro/E, flow around the shear layer 
remains attached and inertial waves reappear a t  the trailing edge (figure 12). Fluid 
flows very slowly through shear layer and the region above the obstacle behind the 
shear layer, but does not appear to become trapped there for H > 0001. For higher 
Re, the critical value depending on obstacle shape and H ,  separation occurs at the 
shear layer, and vortieity is shed from the trailing side. Blocking by the shear layer 
results in a low-velocity wake downstream (figures 10 ( b  - d )  and 12 ( b ) ) .  I n  this case the 
wake rather than the obstacle may be the primary source of inertial waves (figure 12 b) .  
Unlike separation from a solid cylinder in a non-rotating fluid, eddy shedding 
only occurs on the right side of the shear layer, and the shed vorticity is of cyclonic 
sign in a system rotating counterclockwise about the z-axis, in agreement with 
Johnson (1978), for Re < 3000. Separation begins for Re z lo3, several orders of 
magnitude larger than for a solid cylinder in the non-rotating case, in agreement with 
the observations of Boyer (1970). 

We have tested the dependence of H,, the value of H for the formation of the 
vertical free shear layer, on obstacle shape for E = 0.61. Here H ,  probably depends 
on Ro and E as well, but this dependence was not tested. The critical values are 
observed to be H e  = 1-0 for the truncated right-circular cylinder and H ,  = 0 2  for the 
spherical cap. The effect of obstacle shape in the formation of closed streamlines above 
the obstacle has been considered by Huppert (1975) and Johnson (1978). Johnson 
(1978) shows that closed streamlines form over a truncated right-circular cylinder for 
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H, x t e ,  and that H ,  is less for a smoother obstacle, in qualitative agreement with 
our observations for the formation of the free shear layer. Further experiments are 
planned to examine the low-H case. 

5. Conclusions 
In  this paper we have discussed the inertial waves formed by flow over ridges 

and isolated axisymmetric obstacles in a rotating fluid, and briefly discussed the 
transformation that takes place as H / e  decreases. For H/s 9 1 ,  inertial waves are 
the predominantfeature; for HIE 6 1 the vertical free shear layer is predominant. 

Two-dimensiorh series solutions for the vertical velocity due to flow over ridges 
of shape f(x) = 1+a,x2+a4x4 in a fluid of finite depth have been found. These 
solutions have been used to  calculate streamlines for comparison with experimental 
observations of flow over ridges. The phase and amplitude of the calculated 
streamlines agree reasonably well with the observations. Discrepancies noted are 
probably due to  the lateral walls and viscosity, which have not been taken into 
account in the calculations. 

Group-path angles and surfaces of constant phase have been calculated using 
Lighthill’s asymptotic theory for linear dispersive waves in the far field, and 
comparisons have been made with the observed inertial waves. The agreement with 
experimental results is encouraging, particularly in view of the fact that  the theory 
is not necessarily applied to  the far field. A discrepancy in the group-path angle for 
the spherical cap may be due to  the experimentally observed lateral deflection of the 
mean flow in the lee of the isolated obstacle, which has not been taken into account 
in the calculations. 

The Ro-dependence of the shape of the caustic calculated for a point source is 
qualitatively the same as that observed for flow over a spherical cap. However, the 
converging family of phase surfaces is inexplicably absent. Similar calculations 
(streamlines, group paths and surfaces of constant phase) carried out for the small-Ro 
limit (Ro + 0, H fixed) depart significantly from observations. The main problem with 
the small-Ro limit is that it does not account correctly for the contribution by the 
high wavenumbers. Moreover, the fundamental high-wavenumber cutoff is neglected 
entirely. 

The formation of a tilted columnar disturbance by the inertial waves is observed 
for low Ro, but i t  is argued that this should not be interpretted as a Taylor column 
because (i)  the column is not invariant along lines parallel to  its axis, and (ii) i t  is 
not asymmetric about the centreplane. Furthermore, a vertical free shear layer 
separating the oncoming flow, with velocity comparable to the free-stream velocity, 
from a low-velocity, nearly stagnant region behind i t  is present for small H ,  which 
might more properly be construed as a Taylor column. 

The authors would like to acknowledge the interest expressed by, and many helpful 
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